Stimulation artifact correction method for estimation of early cortico-cortical evoked potentials
نویسندگان
چکیده
BACKGROUND Effective connectivity can be explored using direct electrical stimulations in patients suffering from drug-resistant focal epilepsies and investigated with intracranial electrodes. Responses to brief electrical pulses mimic the physiological propagation of signals and manifest as cortico-cortical evoked potentials (CCEP). The first CCEP component is believed to reflect direct connectivity with the stimulated region but the stimulation artifact, a sharp deflection occurring during a few milliseconds, frequently contaminates it. NEW METHOD In order to recover the characteristics of early CCEP responses, we developed an artifact correction method based on electrical modeling of the electrode-tissue interface. The biophysically motivated artifact templates are then regressed out of the recorded data as in any classical template-matching removal artifact methods. RESULTS Our approach is able to make the distinction between the physiological responses time-locked to the stimulation pulses and the non-physiological component. We tested the correction on simulated CCEP data in order to quantify its efficiency for different stimulation and recording parameters. We demonstrated the efficiency of the new correction method on simulations of single trial recordings for early responses contaminated with the stimulation artifact. The results highlight the importance of sampling frequency for an accurate analysis of CCEP. We then applied the approach to experimental data. COMPARISON WITH EXISTING METHOD The model-based template removal was compared to a correction based on the subtraction of the averaged artifact. CONCLUSIONS This new correction method of stimulation artifact will enable investigators to better analyze early CCEP components and infer direct effective connectivity in future CCEP studies.
منابع مشابه
Electrophysiological evidence for the existence of a posterior cortical-prefrontal-basal forebrain circuitry in modulating sensory responses in visual and somatosensory rat cortical areas.
The prefrontal cortex (PFC) receives input from sensory neocortical regions and sends projections to the basal forebrain (BF). The present study tested the possibility that pathways from sensory cortical regions via the PFC-BF and from the BF back to specific sensory cortical areas could modulate sensory responses. Two prefrontal areas that responded to stimulation of the primary somatosensory ...
متن کاملDifferent Mode of Afferents Determines the Frequency Range of High Frequency Activities in the Human Brain: Direct Electrocorticographic Comparison between Peripheral Nerve and Direct Cortical Stimulation
Physiological high frequency activities (HFA) are related to various brain functions. Factors, however, regulating its frequency have not been well elucidated in humans. To validate the hypothesis that different propagation modes (thalamo-cortical vs. cortico-coritcal projections), or different terminal layers (layer IV vs. layer II/III) affect its frequency, we, in the primary somatosensory co...
متن کاملNew Approach for Exploring Cerebral Functional Connectivity: Review of Cortico-cortical Evoked Potential
There has been a paradigm shift in the understanding of brain function. The intrinsic architecture of neuronal connections forms a key component of the cortical organization in our brain. Many imaging studies, such as noninvasive magnetic resonance imaging (MRI) studies, have now enabled visualization of the white matter fiber tracts interconnecting the functional cortical areas in the living b...
متن کاملImpact of hypokinesia on dynamics of formation of evoked potentials in sensorimotor cortex in early postnatal ontogenesis
The analysis of evoked potentials of sensorimotor cortex in response to electrical stimulation of n. ischiadicus shows that the extremal factor hypokinesia has a negative impact on the dynamics of formation of amplitudal and temporal characteristics since eyes openning in 2-weeks old rats. The most vulnerable process to the impact of hypokinesia is the first-positive phase, which disappears in ...
متن کاملFurther steps in the research of cortico-hypothalamic interactions in cats.
The cerebral cortex of the cat was systematically stimulated with electric shocks, and the recording of the evoked potentials in the hypothalamus was performed with macro- and microelectrodes stereotaxically guided. Stimulation of definite cortical loci evoked potentials in several hypothalamic nuclei studied. Three focuses were found, coincident with the so called "primary sensory area" of the...
متن کامل